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ABSTRACT 
 
A videogrammetric technique developed at NASA Langley Research Center has been used at five NASA facilities at the 
Langley and Ames Research Centers for deformation measurements on a number of sting mounted and semispan models.  
These include high-speed research and transport models tested over a wide range of aerodynamic conditions including 
subsonic, transonic, and supersonic regimes.  The technique, based on digital photogrammetry, has been used to measure 
model attitude, deformation, and sting bending.  In addition, the technique has been used to study model injection rate effects 
and to calibrate and validate methods for predicting static aeroelastic deformations of wind tunnel models.  An effort is 
currently underway to develop an intelligent videogrammetric measurement system that will be both useful and usable in 
large production wind tunnels while providing accurate data in a robust and timely manner.  Designed to encode a higher 
degree of knowledge through computer vision, the system features advanced pattern recognition techniques to improve 
automated location and identification of targets placed on the wind tunnel model to be used for aerodynamic measurements 
such as attitude and deformation. This paper will describe the development and strategy of the new intelligent system that 
was used in a recent test at a large transonic wind tunnel.   
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1. INTRODUCTION 
An effort is currently underway at NASA Langley to improve and optimize videogrammetric techniques suitable for robust 
and routine use in major NASA facilities for the measurement of model attitude and deformation.  The measurement of 
model attitude is fundamental to wind tunnel testing.  Accurate and reliable measurements are required for the computation of 
lift and drag from normal and axial forces.  In addition, the accurate measurement of wind tunnel model deformation is 
essential in understanding the effects of control and lifting surfaces on aerodynamic performance.  Performance differences 
caused by unknown control or lifting surface position or movement, e.g. model deformation, can decrease data confidence 
and cause discrepancies between measured values and those predicted based on rigid body assumptions.  
 
Automatic image processing and close range photogrammetry are becoming standard tools for the measurement of wind 
tunnel model deformation and are widely used in industry to accurately model three-dimensional (3-D) structures.  The 
development of videogrammetric model deformation (VMD) techniques with multiple cameras for use in wind tunnels dates 
back to the 1980s [1].  Advanced image processing coupled with the development of a simplified single-camera, single-view 
technique has permitted automated data acquisition and reduction facilitating near routine use in production wind tunnels [2].  
As computers attain the processing speed required to emulate human intellectual capabilities, we turn our attention to the 
development of an intelligent videogrammetric measurement system capable of learning from experience, self-organizing its 
programming, and adjusting its course of action for standard use in production wind tunnels. Computer vision is used as a 
primary source of knowledge for monitoring model deformation as well as changing environmental and wind tunnel 
conditions.  In addition to having tools that increase automation using precise, crisp rules of behavior or well-defined 
symbols usually extracted from human expertise, the system is designed to emulate a biological intelligence operating on data 
that are not well-defined but are “fuzzy” or subject to interpretation and have some degree of uncertainty [3].  
 
Typically, an industrial-grade, video-rate, charged coupled device (CCD) camera and a frame grabber board are used to 
record image sequences of static or dynamic objects for analysis to extract useful information.  Image acquisition and 
processing are provided by a distributed, parallel-processing architecture to enhance real-time capabilities. Advanced pattern 
recognition techniques are used to improve automated location and identification of targets used for aerodynamic 



  

measurements.  Close range photogrammetry is then used to extract accurate two-dimensional (2-D) or 3-D spatial 
measurements that are then transformed into the engineering variables of interest (deformation, attitude, etc.)   The use of 
visual input is maximized to automate calibration and initial test setup.  Representative data are included to illustrate typical 
problems encountered by optical systems in a wind tunnel environment.  This work is part of an overall effort to develop a 
robust and usable static and dynamic model deformation measurement capability (up to 1000 Hz) useful for a wide variety of 
wind tunnel testing that may also have potential for the measurement of model attitude as a complement to inertial sensors.  
Emphasis is placed on the design of a highly parallel processing system rather than a computer architecture that processes 
data sequentially.   

 
This paper describes the development of a robust, highly accurate, “smart” videogrammetric measurement instrument using 
advanced non-traditional methods to make possible routine use in production wind tunnels.  The system is being developed to 
encode a higher degree of knowledge, provide faster execution, be less prone to error, and require less maintenance. 
  

2. VIDEOGRAMMETRY 
The videogrammetric measurement technique is an optical method characterized by automated image processing, sub-pixel 
resolution, near routine, near real-time measurements, and high data volume with minimum impact to productivity [4].  The 
technique consists of a single-camera, single-view, photogrammetric solution from digital images of targets placed on the 
wing at known semi-span locations.  Except for the targets, the technique is non-intrusive.  When a light source is positioned 
near the camera the light retro-reflected from the tape targets can greatly exceed that possible with white diffuse targets, 
resulting in a high contrast image in which the targets are easily discriminated from the background.  Such high contrast 
images are amenable to automated image processing.   Polished paint targets with less contrast are used when target thickness 
is an issue. 
 
Acquisition and digitization of a live video stream at a nominal 60 Hz (up to 320 Hz in some cases) can be triggered by the 
facility Data Acquisition System (DAS).  Once the video sequence is acquired, a blob analysis is used for target detection in 
the image.  A gray-scale centroid calculation with the background level automatically removed provides sub-pixel accuracy.  
Single-view photogrammetry is then used to determine the X (stream-wise) and Z (vertical) coordinates in object space, given 
the known Y (cross-flow) coordinates.  Z-intercept location and slope angles of the target row are computed by a linear least 
squares fit in X-Z space for each semispan station along the wing [5].   

2.1. Primary Data Reduction 
The VMD measurement technique uses photogrammetry to extract two-dimensional (2D) images and map them into a three 
dimensional (3D) object space.  The collinearity equations provide a mapping of coordinates between 3D object space and 
the 2D coordinates in the image plane [6], [7].  The nth target location point T
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The interior orientation of the camera is given by the parameter set ),,( pp yxc .  The exterior orientation of the camera is 

given by the parameter set ( ),,,,, ccc ZYXκφω ,where κφω ,, are rotational Euler angles and ccc ZYX ,,  represent the 
coordinates of the perspective center of the camera in object space.  The dx and dy terms are predominantly due to lens 
distortion.   
 
In a single camera VMD system, a solution (X, Y, Z)  to the collinearity equations from a single set of image coordinates (x,y) 
is not possible unless additional information is provided.  For motion confined to the pitch plane, the spanwise locations (Y) 
of the targets are fixed so that the number of unknowns reduces to 2, namely X and Z. 
 



  

  
 

3. SYSTEM 
 

3.1. Experimental Setup 
A typical experimental setup for measuring model attitude in a wind tunnel facility is shown in Figure 1.  The camera and 
(possibly) fiber optic lighting are positioned to view the model located in the test section of the wind tunnel.  The field–of-
view must be sufficient so as not to lose sight of the targets when the model is pitched.  The videogrammetry acquisition 
system, consisting of a frame grabber and a Personal Computer (PC) located in a nearby control room can be interfaced to the 
main wind tunnel Data Acquisition System (DAS) via an Ethernet connection.  The basic hardware consists of one or more 
instrumentation-grade analog or digital CCD cameras, a frame grabber board, and a Pentium III- or higher-based computer 
with custom image acquisition and 
reduction software.  If retro-reflective 
targets are used, a fiber optic light source 
is positioned as close to the camera as 
possible to take advantage of the retro-
reflective nature of the optical targets.  If 
the thickness of the retro-reflective 
targets (0.10mm) is a concern then 
polished paint targets (<10µm) can be 
used.  Existing test section lighting is 
typically used to illuminate the polished 
paint targets.  The camera is usually 
positioned for an oblique view of the 
model at an angle of about 20 to 40° to 
the horizontal for model deformation 
measurements.  Targets are typically 
placed in rows at a number of known 
semispan locations, η, (or known 
locations relative to the control surface of 
interest) from near the wing root to near 
the wing tip.  The diameters of the targets 
are selected to span at least 5 pixels on 
the image plane [4].  

 

3.2. Targets and Identification 
Targets on the model are used to 
establish a relation between 2-D coordinates in the image and 2-D or 3-D coordinates in object space. Targets are selected to 
provide adequate contrast, ranging from black on a light background to white on a dark background to retro-reflective tape 
targets, in order to accommodate a variety of conditions.  Retro-reflective targets were used for the first major facility test of 
the intelligent system on the DARPA/Northrop Grumman Smart Wing Un-piloted Combat Air Vehicle (UCAV) recently 
tested at the NASA Langley Transonic Dynamics Tunnel.  Targets were placed on the smart control surface, seen on left side 
of Figure 2, in order to measure the shape of the control surface at selected locations.  A more detailed image of the targets on 
the flap is shown in Figure 3.  The hingeless flap has 10 segments that  were independently controlled to produce various flap 
shapes.  Static and dynamic time histories (3-second records at 60 Hz) of the shape of segments 3 and 6 were automatically 
acquired and reduced with the prototype intelligent videogrammetric measurement system.  The system was used in an 
automated mode throughout the test for over 2000 data points without a major malfunction. 

Figure 1:  Typical experimental setup for a wind tunnel facility. 



  

Figure 2: DARPA/AFRL/NASA/Northrop Grumman
Smart Wing model as tested in NASA Langley TDT. Figure 3:  Retro-reflective targets on smart flap. 

 

 
An example of polished painted targets is shown in figure 
4.  The model is a Boeing 777 under preparation for 
testing at the NASA Langley National Transonic Facility 
(NTF).  Nine white targets can be clearly seen on the 
wing, a tenth target is just visible on the inboard portion 
of the wing and two targets on the upper left of the 
fuselage are not visible on the image.   The contrast of the 
nine targets is much higher than the other three targets 
due to a black far-side wall that is seen as a specular 
reflection on most of the wing that tends to emphasize the 
white diffuse painted targets.  For the three targets with 
low contrast the black wall is not seen in reflection and 
the contrast is very poor.  This particular image was 
acquired with a digital still camera at a slightly different 
location than that used by the data camera and is 
presented to illustrate the difficulties that can arise with 
illumination. 

 
A processed image from a data camera at the NTF is shown in 
figure 5.  Note that now the fuselage targets are readily apparent.  
The contrast is less than that possible with retro-reflective targets, 
but is still adequate for automated data acquisition and reduction.  
Figure 5 illustrates that it may be necessary to develop special 
illumination techniques in order to facilitate automated image 
processing.  To emphasize the difficulty in developing such 
special illumination techniques, it should be noted that a similarly 
successful technique has not yet been developed for semispan 
testing at the NTF.  The regions of interest seen in Figure 5 are 
used to restrict the extent of the image processing as indicated.  
In addition the target numbering system is depicted after the 
measurement system has automatically located and identified the 
correct targets. 

Figure 4:  Boeing 777 under preparation for testing in the 
National Transonic Facility.

Figure 5:  Processed image from a data camera at the 
NTF for the model shown in Figure 4 showing 
regions of interest and target labels. 



  

Figure 7: Image from a data camera of the model shown in
figure 6. 

In optical measurement systems, changing lighting conditions 
often affect the quality of the image.  Titus [8] points out the 
critical nature of lighting for machine vision applications.  
Proper lighting can make the difference between success and 
failure for a vision system.  Good imagery is a precursor to any 
successful machine vision measurement system, especially for 

one that must operate in an automated manner with hands-off operation.  Figure 6 illustrates another example of polished 
painted targets that were used, in this case, for the determination of model pitch angle. The model is a high-speed research 
model normally used as a check-standard model at the NASA Langley 16-Ft Transonic Tunnel for statistical quality control.  
Note that the retro-reflective screen (used for shadowgraph flow visualization) seen on the far-side wall to the right of the 
model makes it difficult to use retro-reflective targets at that facility since a very bright background results from on-axis 
illumination.  Considerable off-axis illumination was required to obtain images (figure 7) of the polished paint targets with 
sufficient contrast in order to avoid the bright background that would result from nearly on-axis illumination.  This example 
illustrates that adequate contrast for automated measurements is possible with a judicious selection of lighting location and 
the use of polished painted targets.  Image processing is important for such applications, but is only one consideration of 
many regarding the complete system.   

3.3. Camera Calibration 
During camera calibration image plane correction parameters 
for lens distortion and lens alignment to the CCD sensor, as 
well as the determination of the location and pointing angles of 
the camera in the test section coordinate system, are 
determined.  The parameters for image plane corrections are 
sometimes determined in a laboratory prior to setting up the 
measurement system in the test section.  
 
A calibration fixture consisting of a number of targets with 
known spatial coordinates is used to determine lens distortion 
and principal distance, as well as to determine the orientation of 
the camera in the test section coordinate system.  The 
calibration fixture is placed to fill the field-of-view of the 
camera for the distortion computations and is not necessarily 
aligned to the model for this phase of the calibration.  Once the 
measurement system is set up with the proper view of the 
model, a calibration fixture is aligned to the test section 
coordinate system (Figure 8) in order to determine the pointing 
angles and location of the camera via photogrammetric space 
resection. 

3.4. Automated target tracking 
Operations of routine tasks performed by the facility operator can be automated through a variety of image processing 
techniques.   Introducing automatic thresholding of targets, target detection algorithms and greater flexibility in pattern 

Figure 8:  Calibration plate underneath model at the 
Langley Transonic Dynamics Tunnel for Smart Wing 
Test shown in Figures 2and 3. 

Figure 6:  Check standard model at the NASA Langley 
16-Ft Transonic Tunnel 



  

recognition let the system handle a wider variety of tasks.  Data fusion of multiple data acquisition systems through 
networked operations increases data throughput and data quality   An intelligent measurement system must be able to 
properly handle both high contrast and low contrast targets that may be present in the same image. 

4. INTELLIGENT MEASUREMENTS 
 

A computer vision approach is used to acquire, process, analyze and understand higher dimensional data from 2-D images 
allowing the system to gain knowledge about the model, its size and configuration as well as the wind tunnel test 
environment.  This ability to gain knowledge and learn from experience is a key ingredient in our definition of an intelligent 
system, laying the groundwork for self-organizing its algorithms and adjusting its course of action for standard use in 
production wind tunnels. The optical information processing for the computer vision task comprises many interacting levels.  
At the lowest level, the image is acquired and initial segmentation is used to delineate targets and patterns of interest.  Image 
processing at this level, for example, deals with pattern recognition of the same features of the model rotated at various pitch 
angles.  At the intermediate level, processing provides a direct correspondence between points in the image plane and objects 
in the 3-D plane.  The three dimensional data processing uses techniques based on videogrammetry and computational 
geometry to reconstruct the 3-D motion of the model.  At the highest level of processing, features extracted in the lower 
levels are used to classify and recognize objects [9].  Neural networks, fuzzy logic, and machine reasoning (induction and 
analogy) are some of the processing techniques that can be used for these complex tasks [10].  
 
Computer vision improves the speed and accuracy of measurements by offering autonomous algorithms that can replace 
facility operators and researchers in performing visual tasks during the wind tunnel test.  When it is not possible to entirely 
replace human with autonomous algorithms, the goal becomes to make certain types of operations more efficient allowing 
visual tasks to be performed more reliably, more quickly and more accurately.   The continuous surveillance of the aeroelastic 
model during test assures constant flow of accurate data.  Lighting conditions may change, the model itself may be rotated 
and shifted in the test section due to sting bending and the system must adapt in response to visual input regarding the 
environment.  Just as human vision uses the eye and a brain, sensing and processing of optical information in computer vision 
are performed by the cameras and the host computer. 

4.1. Pattern detection 
The intelligent videogrammetric measurement system under development and currently being used for initial testing utilizes 
an interconnected set of computer vision algorithms for pattern detection that are applicable when using static cameras, target 
tracking and explicit models.  The system uses a flexible framework encompassing three basic methods for pattern detection 
and recognition:  

(1) an image invariance method that uses a set of image pattern relationships to uniquely determine patterns of models 
being searched for [11]; 

(2) a model-based method where a model is defined for the object of interest and the system attempts to match this 
model to different parts of the image in order to find a fit [12]; 

(3) an example-based learning method that breaks an object down into components that can be located and then 
combined if their configuration is valid [13], [14]. 

A built-in flexibility is desired, allowing the operator/system to utilize the pattern-matching technique most appropriate to the 
site. Sometimes the most successful technique comprises several pattern-matching algorithms used together.  Although 
images are represented and manipulated as a set of pixels, for near real-time operation it is usually more appropriate to 
perform pattern matching on centroid coordinates of an ensemble of possible targets.  The targets are placed in rows that are 
identified as components of an object.  A component-based approach to object detection is then used to search for the model 
by looking for its identifying components rather than the whole object.  The approach consists of two parts: target detectors 
and a means to integrate components  (or targets) in an image and determine whether the object is valid.  A component-based 
framework takes advantage of known geometric properties of the model and addresses the issue of detecting objects that are 
partially occluded or show poor contrast with the background such as figure 9. 
 
An image sequence of retro-reflective targets taken on a Micro Aerial Vehicle (MAV) at 867 frames/sec at the NASA 
Langley BART facility is shown in figure 9.  Retro-reflective targets near the trailing edge of the MAV wing are seen to 
disappear and then reappear, not because the targets are moving in and out of the field-of-view of the camera or being 
blocked, but rather because the angle of the targets changes enough due to the dynamic motion of the MAV that the light 
return fluctuates drastically over short periods of time.  Targets that disappear and then reappear are especially troublesome to 
techniques striving for full hands-off automation. 
 



  

Vision processing often requires handling of data and knowledge that is vague and uncertain when performing routine 
recognition and quantitative interpretation of objects in images.  Optical pattern recognition provides a useful tool for target 
recognition and extraction, target tracking and machine vision.  The incoming images are projections of the aerodynamic 
model in a wind tunnel test section and these are often characterized by fuzziness or grayness.    The human visual system 
routinely handles uncertain information efficiently; however, this is a difficult task for the computer vision system.  
Geometric features can be subjected to a wide range of variations and the system must not only discern these features but 
characterize the object of interest as well.  The wide-ranging parameters of the preprocessing stage must now be adapted to 
the particulars of the wind tunnel environment. As incoming data are collected, processed and analyzed, the vision system  
gains knowledge about the scene.   Suitable features are extracted for measuring salient object properties and these are used 
to refine classification or object recognition parameters.  The visual observations become an integral part of the vision system 
when the vision system actively responds (or adapts) to these observations. 

Figure 9:  Micro Aerial Vehicle undergoing testing at the NASA Langley BART facility; an image sequence of retro-
reflective targets on a MAV taken at 867 frames/sec. 

4.2. Preprocess stage 
In the preprocess stage, wide-ranging search parameters are used to initially select the uncertainty levels, positional accuracy, 
speed parameters and search regions of the visual input.  As soon as the system becomes operational, it uses data acquired 
during the wind off test points to refine search parameters such as the selection of optimized search regions and the range of 
angles to search.  The preprocess stage uses knowledge gained about the model to decide on the optimal strategy for 
subsequent search operations.  Providing a typical target image helps improve the search’s robustness and optimize the 
strategy for subsequent search operations. 

4.3. Blob analysis 
Images are represented as sets of pixels, artifacts of the sensing device, having no relation to image content nor to our 
perception of image content. Image processing at this level is time-consuming and a blob analysis is often performed as an 
elimination process whereby only connected regions of pixels are considered in further analysis.   A blob is an area of 
touching pixels that are in the same logical pixel state.  Often blobs are used in feature extraction by selecting features that 
satisfy certain criteria.  The raw data is reduced to a few measurements generally producing a more comprehensible and 
useful result. 

4.4. Fuzzy image processing 
Figure 10 illustrates troublesome glints that can arise 
from specular reflections due to components such as 
nacelles.  Glints are a common source of ambiguity 
when processing images of a model in a wind tunnel 
test section. Glints are especially difficult to correctly 
identify because of their similarity in size and intensity 
to the targets, resulting in their incorrect classification 
using algorithmic methods.  If the glints are 
mistakenly found as targets then the image coordinate 
data will be corrupted. 
 

Figure 10:  Model image showing troublesome glint from a 
nacelle.  



  

Fuzzy logic is a logic that deals with the uncertainty or vagueness inherent in how an object or event is characterized [15].  
Fuzzy image processing provides a tool for making inferences from imperfect and incomplete data.  Crisp rules allow 
elements of a set to have a membership of zero or one.  Elements either belong to the set or they do not.  Parameters relating 
the interconnectedness of pixels used to search for targets (or blobs) in an image are defined using these crisp rules allowing 
for searches based on brightness, blob area and size of interconnectedness often resulting in the incorrect classification of 
glints as blobs. Fuzzy sets extend this membership classification by introducing a degree of membership that ranges from 0 
(not in the set) to one (definitely in the set) inclusive.  Mathematically, the degree of membership is defined by a membership 
function, µA(x): 
 

}))(,({ XxxxA A ∈= µ  where ]1,0[:)( →XxAµ .                                                      (2) 
 
Images as fuzzy sets can be represented by individual elements, µA(xi)/ xi called fuzzy singletons [16].   An image A of size 
M x N pixels with L gray levels can be defined as an array of fuzzy singletons (fuzzy sets with only one supporting point).  
For this application, the membership value µA(xmn) is designated by a predefined image property (brightness). The array is 
denoted as: 
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4.4.1. Fuzzy set operations 

For two fuzzy sets, A and B, the following pointwise operations are defined for all Xx ∈ : 
 
equality:   )()( xxBA BA µµ =⇔=  

containment:  )()( xxBA BA µµ ≤⇔⊂  

union:  )}(),(max{)(, xxxBA BABA µµµ =∪ ∪                (4) 

intersection: )}(),(min{)(, xxxBA BABA µµµ =∩ ∩  

complement: )(1)(, xxA AA µµ −=  
 
The operation of fuzzification transforms a nonfuzzy set into a fuzzy set or increases the fuzziness of a fuzzy set. 

4.5. Model-based method 
In the model-based approach, a model is defined for the object of interest and the system attempts to match this model to the 
image in order to find a pattern match.  Two types of errors in this type of pattern matching are predominant: (1) to miss a 
match or to not match a feature in an image and (2) to find a false match. Work has been devoted to estimation based on 
robust methods – ideally, even if a false match is found, a meaningful result can still be obtained.   Solutions must be robust 
enough to handle variation introduced by sensitivity to noise, correlators highly sensitive to even small changes in input 
pattern, low contrast targets, limited illumination options, and limited view ports.  Often an image must be normalized prior 
to object detection. 
Normalized grayscale correlation.  A suitable similarity measure of the model, M and image, I, where M and I are images 
of  size N pixels, is given by the normalized cross-correlation function 
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Result, r, reaches its maximum value of 1 where the model and the image match exactly.  A zero result indicates the model 
and image are uncorrelated, and a negative value where the similarity is less than might be expected by chance. 
 



  

To speed up the search all terms in the normalized correlation that are associated only with the model are evaluated once 
when the model is defined.  Only three terms need to be calculated during the search, IMII ,, 2 .               
                                                   
 
This amounts to two multiplications and three additions for each model 
pixel.  For a typical 128x128 pixel model in a 512x512 pixel image the 
total number of multiplications needed for this search is 2x5122x1282 
an exhaustive search that would take too long.  To reduce the number 
of computations, a hierarchical search utilizes a series of smaller, lower 
resolution versions of both the image and the model.  The search is 
performed on a much reduced scale as seen in Figure 11 and proceeds 
to higher and higher resolutions to ensure that the matches found at 
lower resolution actually were occurrences of the model. 

4.6. Example based learning method 
In the learning method, the characterization of the aeroelastic 
deformation of the wing structure is performed in stages. Pattern 
recognition algorithms are required to be robust and fast since they are 
performed as the image is acquired. This is accomplished through a set 
of built-in pattern analysis tools.  A pattern analysis function is 
performed with a two-dimensional reconstruction of the image.  
Movement of the pattern is defined in a sequence of static poses of the 
model through various patterns of movement.  In the first stage, the 
target pattern is analyzed as the model is pitched in a wind-off condition.  The pattern is tracked as a single “blob-like” entity 
through a range of pitch angles.  Recognition of movement is accomplished through use of a temporal template [10], [17].  A 

single image is used to record and display cumulative binary overall motion of the model.  Multiple binary images are stored 
at different pitch angles.  In Figure 12 a binary image depicts the blob-like entity representing the overlapping pattern of the 
target motion on the Smart Wing flap.  The motion of the 10 targets on the flap is shown as the model is both pitched and the 
flap deflected. 
 
Once the full range of motion of the pattern has been defined, the overall shape is used to hypothesize a fuzzy region of 
interest for robust and speedy recognition of target patterns.  Movement of the wing structure viewed with a static 
background is defined as motion over time.  The basic idea is to construct a temporal template defining the extent of 
movement encompassing specific representation of the movement (e.g., changes in pitch or flap angle) as well as predefined 
fuzzy regions using motion instead of structural features [17].   Key elements are identified as fuzzy sets in which the 

Figure 11:  Hierarchical search method 

Figure 12:  Overlapped images of the target motion on the Smart Wing flap as (a) the model is pitched showing a motion 
history for all angles and (b) an overlay showing the target pattern rotation at two pitch angles. 



  

transition from membership to non-membership is gradual than abrupt. The acquired image is matched against the template 
having stored representations of known movements.   
 
The image processing input data, consisting of gray levels is processed in the membership plane where the inference engine 
is used to make decisions, classify or aggregate data according to the fuzzy set rules.  Prior to this, the image may go through 
an initial fuzzification where problem areas (such as brightness ambiguity, vagueness or ill-defined data) are assigned 
membership values with respect to the properties prior to reaching the membership plane. 

4.7. Fuzzy Logic and Machine Reasoning 
The brain of the system is a fuzzy inference engine containing the knowledge about the relations between the individual 
fuzzy input images and output data.  The fuzzy inference engine comprises if-then conditions according to Equations 4.  
Machine reasoning techniques are applied to make the computer program evaluate a proposition and decide whether or not 
some action should be the consequent of the proposition.  The proposition expressed in either Boolean or fuzzy logic (•  
represents a dyadic operator AND or OR) is a collection of predicates, Pi that are evaluated before a set of actions, Ai are 
taken.   For example,   
 
If P1 •P2 •P3 …Pn then A1 …An                         (6) 
 
The reasoning system isolates and constructs the necessary relationships to prove the truth of the predicate proposition, and if 
the predicate is true, then a final classification of targets by their features is performed. 

5. SAMPLE WING TWIST AND 
DEFORMATION RESULTS 

Typical dynamic deformation contours 
for the first five images in a sequence 
are plotted in Figure 13 [5].  Video 
photogrammetry was used to measure 
dynamic deformation on the Models 
for Aeroelastic Validation Research 
Involving Computation semispan 
model (MAVRIC-I), a business jet 
wing-fuselage flutter model, in NASA 
Langley’s Transonic Dynamics Tunnel 
(TDT).   
 
Figure 14 illustrates dynamic wing 
twist measurements taken on the same 
semispan model in the Transonic 
Dynamics Tunnel.   The frequency of 
the variation of ∆Z and corresponding 
∆θ  versus time of the five target rows 
for a typical data point near the flutter 
boundary for an aeroelastic semispan 
model are plotted.  The frequency 
spectra were calculated by Fast Fourier 
Transforms (FFT) of the 5 second 
records of each ∆θ and ∆Z time history.   

Figure 13:  Deformation contours for the first five images in a sequence. 



  

 

6. CONCLUDING REMARKS 
 
This paper highlights some valuable first steps in the development of an intelligent videogrammetric measurement system 
suitable for robust, routine use in production wind tunnels.  Initial successes with a prototype system are encouraging.  The 
prototype system performed well at a large transonic wind tunnel where it was used to measure static and dynamic shapes of 
2 segments of a 10-segmented smart flap.  The system was used in an automated mode throughout the test for over 2000 data 
points without a major malfunction.  Enhancements under development include pattern matching to further increase the 
robustness of the system. Future work includes the use of templates created from existing features on the model as a non-
intrusive replacement for the currently used retro-reflective targets.  Modern image processing techniques will identify highly 
accurate pattern matches producing quality results with little labor.  The complexity of target recognition and tracking 
capability is handled by the intelligence and adaptiveness of a knowledge based system.  Reasoning and adaptive capabilities 
are built into the system through use of fuzzy logic allowing the system to automatically configure and train itself, reducing 
the need for “expert” operators. 
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